Pediatric Hematology

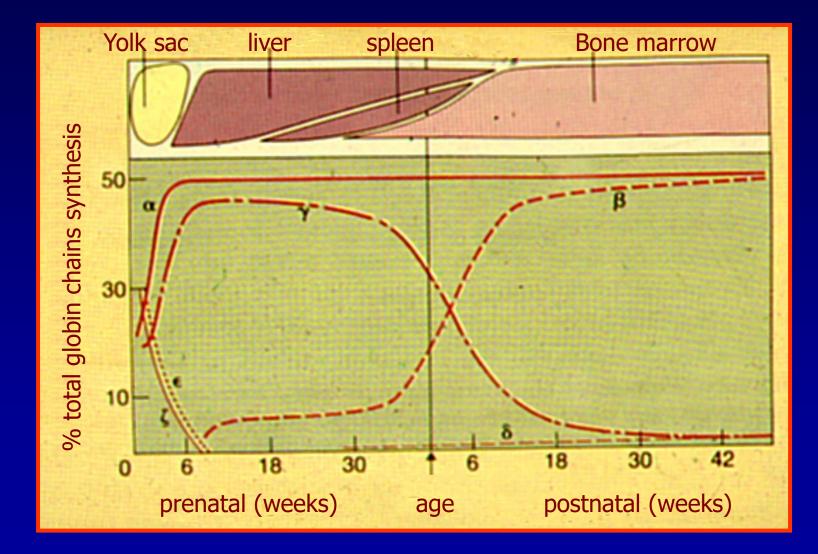
Anemia in children and adolescents

- <u>Age (y)</u> <u>Hb (g/dl)</u>
- 0.5 2 < 10.5
- 2-14 <11.5
- 15 18 girls < 12.0 boys < 13.0

Classification of anemias according to the size of red cells

- Microcytic anemia
- Macrocytic anemia
- Normocytic anemia

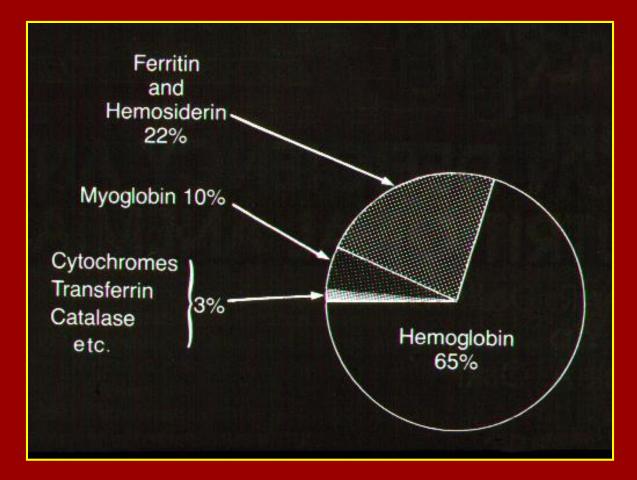
Red Cells Indexes


- MCV (mean corpuscular volume):
- Lower normal limit in children < 10 y: 70 fl + age in years
- Upper normal limit since 6th mo: 84 + 0.6fl/y till achievement a limit for adults 95 fl
- MCH (mean corpuscular Hb): usually follows changes in MCV
- MCHC (mean corpuscular Hb concentration):
- value > 35g/dl is typical for HS, decreased values for iron deficiency, thalassemia
- **RDW (red cell distribution width):** range of variation in red cell size (anisocytosis)

Development of hemoglobin and erythrocyte volume values since birth

into adulthood. (adapted from: Dallman PR, J Pediatr 1979, 94: 26; Stockman III JA, Pochedly C, Developmental and Neonatal Hematology, Raven Press New York 1988)

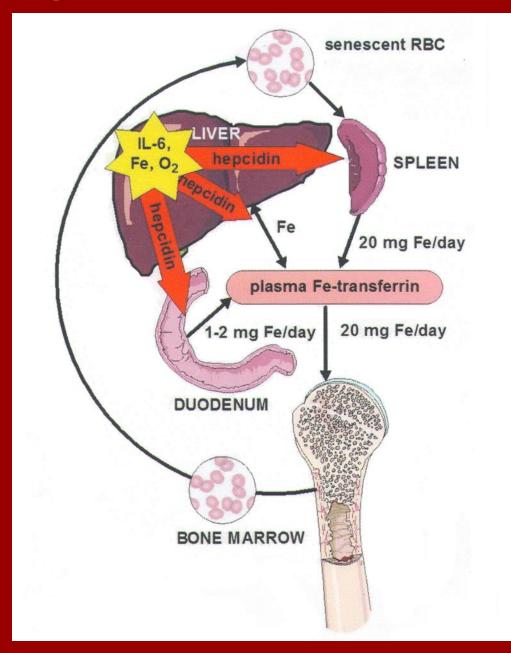
	Hemoglobin (g/dl)		MCV (fl)	
Age	Mean	Lower limit	Mean	Lower limit
1. day	19.0	17.0	119	101
1 m	14.0	11.0	105	90
2 m	11.0	9.3	100	83
3 m	11.0	9.5	88	78
6m-2y	12.5	11.0	77	70
2-5y	12.5	11.0	79	73
5-9	13.0	11.5	81	75
9-12	13.5	12.0	83	76
12-14 years				
females	13.5	12.0	85	77
males	14.0	12.5	84	76
14-18 years				
females	14.0	12.0	87	78
males	15.0	13.0	86	77
18-49 years				
females	14.0	12.0	90	80
males	16.0	14.0	90	80


Hemoglobin development – fetal and neonatal period

Microcytic anemias

- Iron deficiency
- Chronic inflammation/malignancy
- Thalassemias
- Sideroblastic anemia
- Congenital hemolytic anemias with unstable hemoglobin
- Chronic lead poisoning

DISTRIBUTION OF IRON IN MAN (adult male: \approx 3,5 gr)


Iron absorption

- Duodenum acid production in stomach decreases pH in duodenum, Fe ³⁺ (insoluble) → Fe ²⁺ (valid for inorganic iron)
- Only 10% inorganic Fe absorbed
- Hem (meat) is absorbed independently by pH, easily, mechanism poorly understood
- Iron deficiency increases absorption, overload decreases
- The exception is ineffective erythropoiesis (thalassemia, PK deficiency, CDA, MDS) and hereditary hemochromatosis

Hepcidin

- Peptid, synthesis is induced by iron and inflammation, suppressed by tissue hypoxia, anemia
- Regulates iron metabolism
- Deficiency causes hereditary hemochromatosis
- Binds to ferroportin (export canal Fe) and blocks iron intake from macrophages, liver, duodenal enterocytes, placent. syncyciotrofoblast into blood
- Consequence is iron deficiency, failure of hemoglobin production and microcytic anemia
- Later on a real iron deficit may develop

Hepcidin and iron metabolism

Intercellular Iron Transport

- 60-80% body iron is in erythropoiesis
- 4 mg Fe circulates in plasma (ery-RES), bound in Trf
- Trf is synthetised in liver, increases in iron deficiency (TBC), decreases in inflammation and in iron overload
- Normally cca 30% binding capacity of Trf is saturated by iron, one molecule Trf binds 2 atoms Fe
- Transport into erytropoiesis, RES, liver

Iron deficiency anemia causes

- Increased requirements for iron intake in the periods of fast growth
- Inadequate iron absorption (food deficient in iron, antacids, H2 blockers, tea, coffee, malabsorption, gut resection, inflammation, Helicobacter pylori)
- Inadequate/non-available iron stores GIT bleeding (parasits, Rendu-Osler), meno/metrorrhagia, hematuria, pulmonary hemosiderosis
- Atransferrinemia (Fe bound to albumin, anemia, liver iron overload)
- Abnormal intracellular iron transport/utilization

Iron deficiency anemia Laboratory diagnostics

- <u>Screening:</u>
- ✓ Hb
- ✓ Transferrin saturation
- ✓ MCV
- ✓ MCH, MCHC
- ✓ RDW
- Definitive diagnosis:
- ✓ ferritin in serum
- ✓ hemosiderin in bone marrow
- ✓ sTfR (sTfR/ferritin)

Iron deficiency anemia Developmental stages

- Prelatent iron deficiency: iron stores deficit (decreased ferritin)
- Latent iron deficiency: iron deficit in stores and erythrocytes (decreased iron in serum, ferritin, increased TBC, sTfR)
- Iron deficiency anemia: iron deficit in stores and erythrocytes, anemia (decreased Hb, Ht, MCV, MCH, MCHC, ferritin, increased sTfR, TBC)
- <u>Dx criteria</u>: Low Hb, serum ferritin < 30 µg/l, norm. CRP, increased sTfR

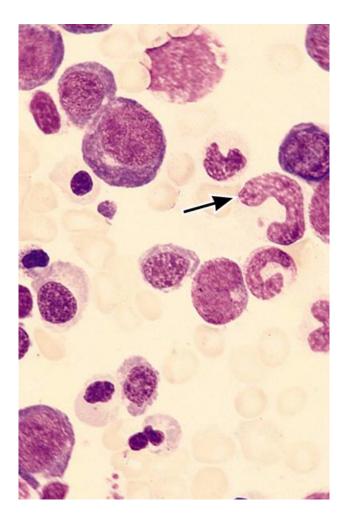
Iron deficiency anemia

- Two peaks in the incidence of anemia in childhood: toddlers 1-3 y and adolescents (highest iron consuption)
- In first 4 m of life in full-term infants sufficient storage iron (from mother, decrease of Hb from 180 to 140g/l)
- Amount of Hb doubles in full-term infant at the age 1 year (180 > 340mg), in a child weighing 1 kg increases 6x (2 kg 3x)
- Adolescent boys increase muscle mass (myoglobin), girls increase iron consumption after menarche, (diets, sport)

Iron deficiency anemia Prophylaxis

- Absorption of iron from cow's milk (10%) lower in comparison with mother's milk (25-50%)
- Amount of iron in mother's milk decreases to 0.3 mg/ml after 5 mo of breastfeading
- Since 6th mo there is necessary to introduce fortified cereals, vegetable, meat
- In pre-term babies supplementation of iron as drops from 2nd mo (2-3 mg element. Fe/kg/day)

Iron deficiency anemia Treatment


- 3-5 mg element. Fe/kg/day, infants drops 3x daily, toddlers sirup 1x daily, between meals, evening (better tolerance)
- Parenteral iron: 1.5 mg/kg/dose, 3x weekly
- GIT difficulties in 10-40% pts induced by release ionic iron, irritating mucous membrane (retarded tbl lower local iron concentration)
- Reticulocyte incease after 1 week, Hb increases in about 20g/l after 1 mo, stores replenished after 3-5 mo

Macrocytic anemia

1. With megaloblastic bone marrow:

- Deficiency vitamin B12
- Deficiency folic acid
- Hereditary orotic aciduria
- 2. Without megaloblastic bone marrow:
- Aplastic anemia
- Diamond-Blackfan anemia
- Hypothyreoidism
- Liver disorders
- BM infiltration
- Dyserythropoetic anemias

Megaloblastic anemia BM + PB

Causes of megaloblastic anemia (makrocytic anemia with megaloblastic erythropoiesis).

Vitamin B12 deficiency:				
1. Inadequate nutrition				
2. Inadequate gastric intrinsic factor				
Pernicióus anemia				
Chronic atrophic gastritis				
Congenital intrinsic factor deficiency				
3. Disease of small intestine (terminal ileum)				
Crohn´s disease				
Surgical resection				
Imerslund-Gräsbeck syndrome				
4. Inherited defects of metaboiism				
Transcobalamin II deficiency				
Cobalamine A-G				
Folates deficiency:				
1. Inadequate nutrition				
2. Defects in absorption (jejunum)				
Celiak disease				
Surgical resection				
3. Folate inhibitos (dihydrofolát reductase) – MTX, pyrimethamine, thrimethoprim, sulfones				
4. Increased requirements				
Prematurity				
Chronic hemolytic anemias				
Chronic inflammatory disorders				
5. Inherited defects				
Hereditary folate malabsorption				
Other causes of megaloblastic anemia:				
1. Defects in purine and pyrimidine synthesis due to treatment by purine analogs (azathioprine, 6- merkaptopurien, 6-thioguanine, acyklovir), pyrimidine (cytarabin), cyklophosfamid, procarbazin				
2. Inborn error of neucleic acid synthesis				
Orotic aciduria				

3. Other – antiepileptics (valproic acid, carbamazepine, phenytoin), CDA type I and III.

Normocytic anemia

1. Congenital hemolytic anemias:

- Defective red cell membrane
- Red cell enzymes deficiencies
- Hemoglobinopathies
- **2. Acquired hemolytic anemias:**
- Autoantibodies (AIHA)
- Microangiopathic hemolytic anemia
- Secondary caused by infection
- **<u>3. Acute blood loss</u>**
- **<u>4. Hypersplenism</u>**
- **5.** Chronic renal failure

Hereditary spherocytosis

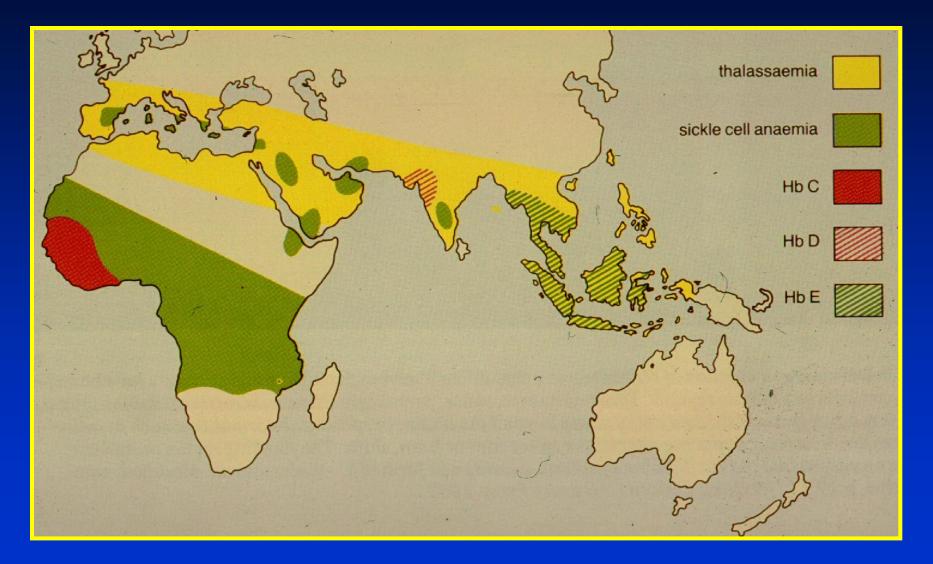
- Most common hemolytic anemia due to red cell membrane defect
- Clinically, biochemically and genetically heterogenous
- Osmotically fragile spherocytes are selectively trapped in the spleen and destroyed
- Clinical signs: anemia, jaundice, splenomegaly
- Autosomal dominant inheritance in 75% of cases, autosomal recessive form, *de novo* mutations

Hereditary spherocytosis Treatment

- Splenectomy is indicated for HS pts with anemia or significant hemolysis (reticulocytes > 5%) or a family history of gallbladder disease (prevention of gallstones)
- Mild hemolysis + gallstones (cholecystectomy and splenectomy)
- Splenectomy at the school-age, total vs. partial, laparotomy vs. laparoscopy
- Risk od sepsis (Pneumococcus, H.influenzae, meningococcus) 4%, mortality 2%
- Vaccination at least 2 weeks before SE, revaccination after 5 years
- ATB prophylaxis PNC 250mg x2, amoxicillin 250 mg x 1 for at least 2 years after SE, at the first sign of febrile infection life-long
- Education of the patients
- Folate supplementation in severe/moderate form
- Follow-up: US for gallstones from the age of 5 years every 3 years, hematological supervision during viral infections-risk of decompensation, TAC

Glucose-6-phosphate dehydrogenase deficiency Clinical manifestation

- Most individuals are asymptomatic and develop symptoms only in response to oxidant stress
- <u>Chronic-non-spherocytic hemolytic anemia</u> class I variant rare mutations, low enzyme activity,nonendemic, males with history of neonatal jaundice and exchange transfusion, chronic anemia worsened by infection or drugs, gallstones, splenomegaly
- <u>Neonatal jaundice:</u> kernicterus, hyperbilirubinemia is largely result of G6PD deficiency in the liver


Glucose-6-phosphate dehydrogenase deficiency Clinical manifestation

- <u>Infection-induced hemolysis</u>: viral (hepatitis A), bacterial, rickettsial, hemolysis acute and intravascular (renal failure), relate to release of oxidants by leukocytes during phagocytosis
- <u>Favism</u>: acute hemolysis within 24-48 hours of ingestion of fava beans, boys aged 2-6 years, "bite"red cells in the smear (Heinz bodies)
- <u>Drug-induced hemolysis</u>: antimalarials, sulphonamides, sulphones, nitrofurantoin, urate oxidase, within 2-3 days, intravascular, hemoglobinuria

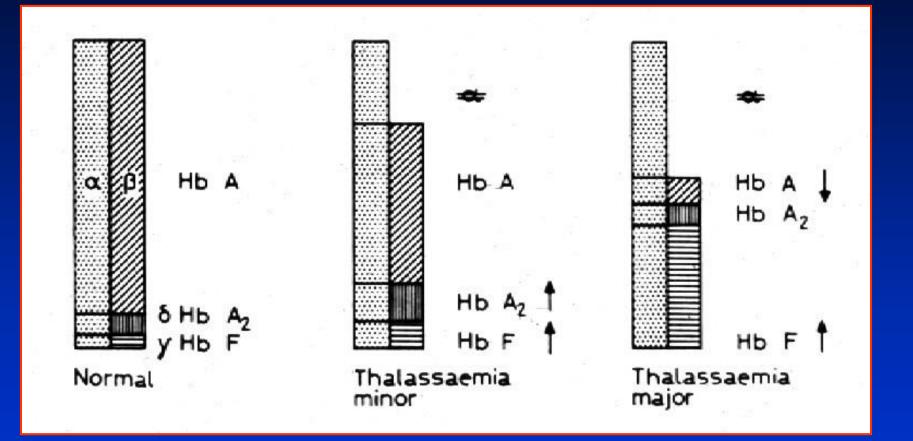
Glucose-6-phosphate dehydrogenase deficiency Prevention and treatment

- Avoidance the precipating causes of hemolysis
- Neonatal screening, health education
- CNSHA splenectomy beneficial in transfusion dependent individuals, folate supplementation

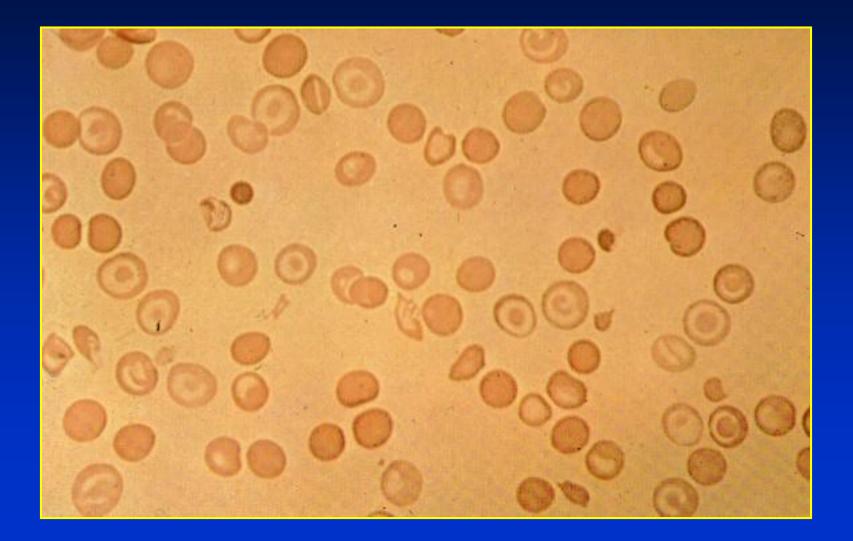
Geographic distribution of hemoglobinopathies

THALASSEMIAS (definition)

 reduced rate of synthesis of one or more globin chains (α, β, δ, γ, δβ, HPFH)


 leading to: imbalanced globin chain synthesis, defective hemoglobin synthesis, and damage of red cells or their precursors

many varieties are currently recognized


 Heterozygous carrier confers a selective advantage against malaria

 $HPFH^* = Hereditary persistence of fetal Hb$

β -THALASSEMIA - GLOBIN CHAINS

β -THAL. - HYPOCHROMIC AND TARGET CELLS

β -THALASSEMIA (clinical picture)

 Thalassemia major = the homozygous state for Th.
= heterozygotes for two different Th. mutations

2. Thalassemia intermedia: some patients with β -Th. genes from both parents

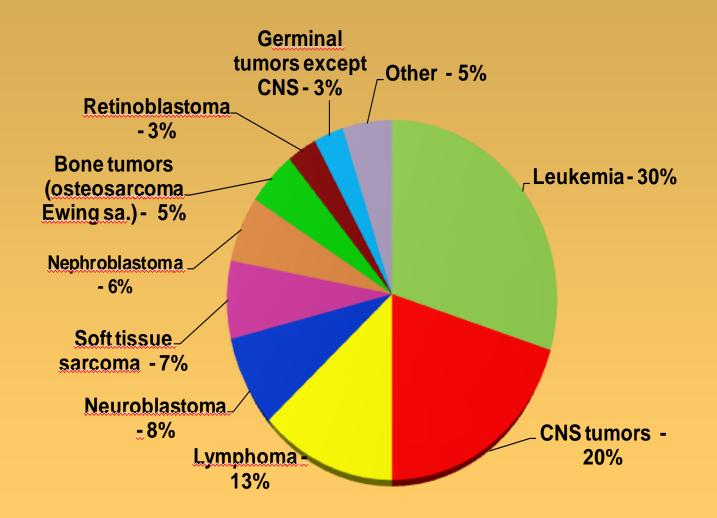
- a milder clinical picture
- later onset
- few or no transfusions requirements

3. Thalassemia minor: heterozygous carrier state

THALASSEMIA MAJOR (course)

- depends entirely on the maintenance of adequate transfusion programe (to maintain relatively normal Hb levels by regular blood transfusion)
- inadequately transfused child develops typical features: stunted growth, bossing of the skull, overgrowth of maxillary region ("mongoloid" appearence of the face)
- adequately transfused child develops normally, has no abnormal physical signs

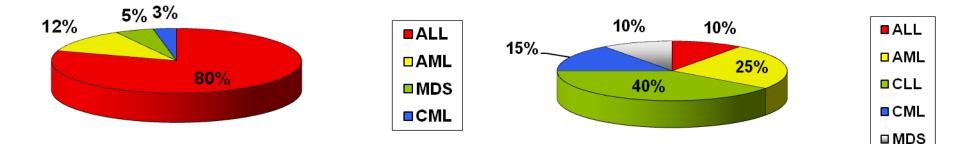
THALASSEMIA MAJOR (Iron overloading)


• First symptoms:

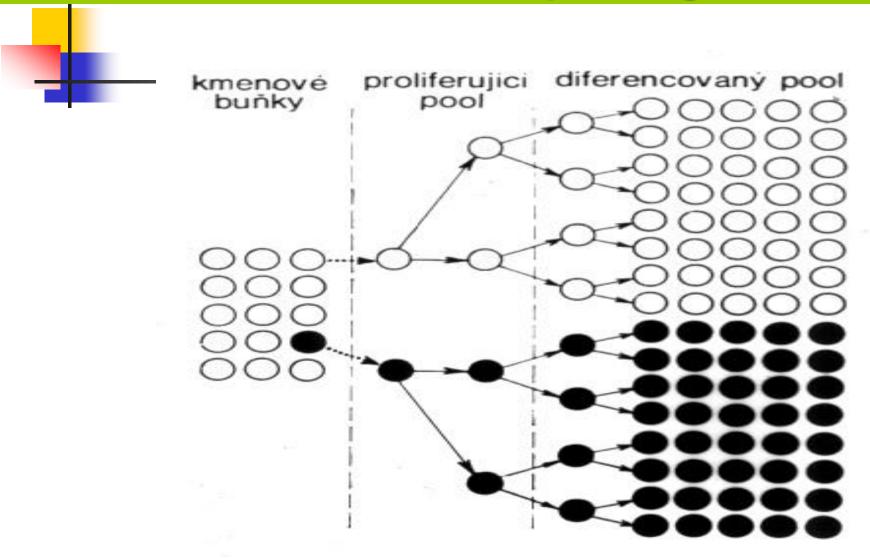
- absence of the pubertal growth spurt
- failure of the menarche
- Endocrine disturbances:
 - diabetes mellitus
 - adrenal insufficiency
- Cardiac complications:
 - arrhytmia
 - cardiac failure

ThThalassemia major-Treatment

- Transfusion policy to maintain Hb above 9 g/dl
- Chelators
- Bone marrow transplantation


Epidemiology of cancer in children

children


adults

Model for the etiology of childhood common ALL Mel Greaves, 1988

Acute leukemia-etiopathogenesis

leukemia- symptoms

• typical manifestation: fatigue, pallor, haemorrhagic diathesis, lymphadenopathy, hepatosplenomegaly, fever, infection

• bone and joint pain in 20-50% ALL cases, exceptionaly in AML, CML

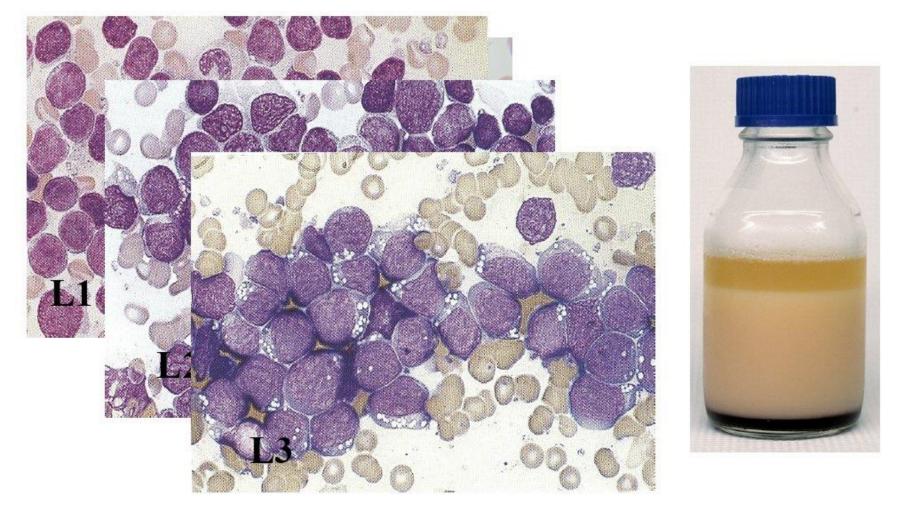
- back pain, limbs
- often the only symptom, smoldering leukemia

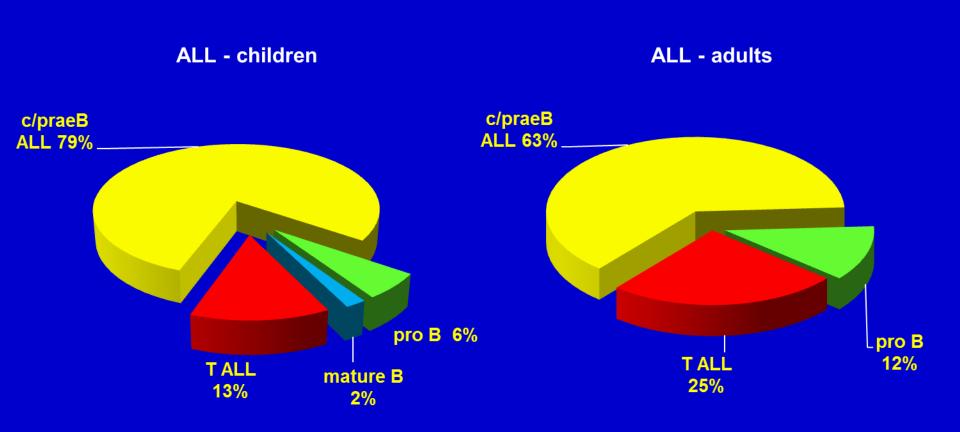
• dyspnoe, vena cava superior syndrome, leukemia cutis, gingival hyperplasia, orbital chloroma, testicular leukemia, priapism, intracranial hypertension, seazures, paresis ...

leukemia- laboratory changes

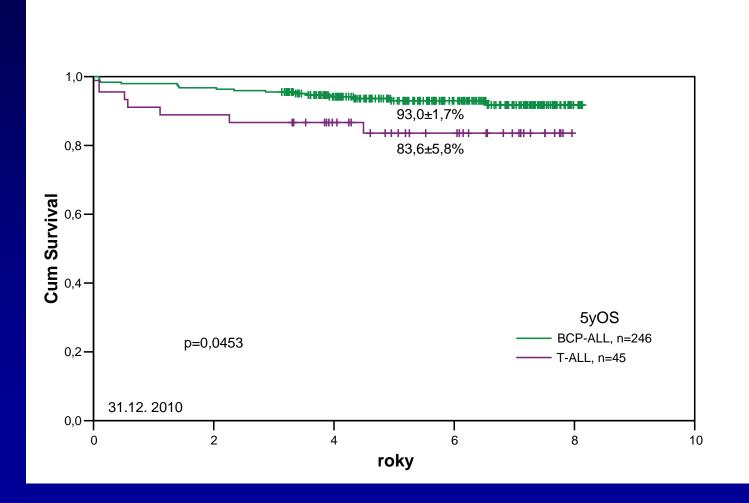
• CBC: typicaly leukocytosis, anemia (normocytic or macrocytic), trombocytopenia, hiatus leucemicus, lymfocytosis, neutropenia

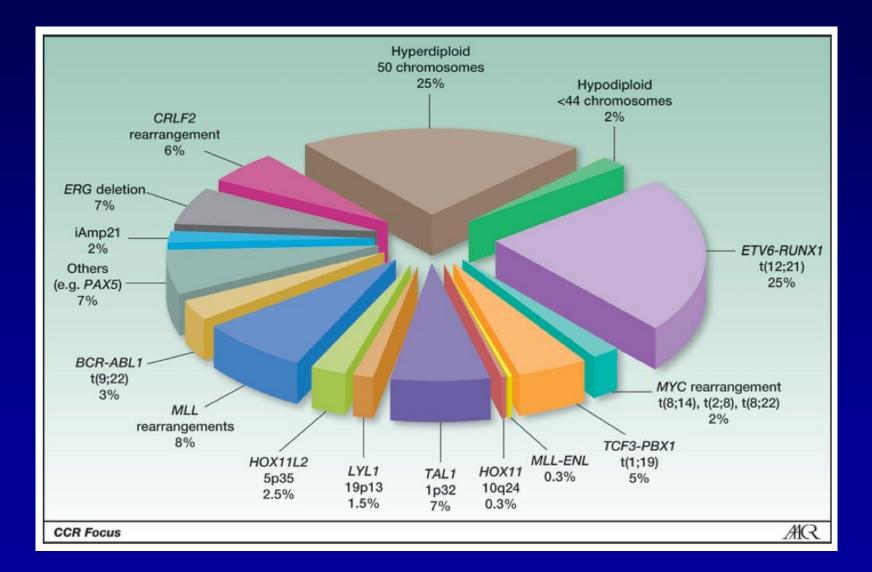
- !! But also normal CBC or leukopenia, pancytopenia, lymphocytosis
- rarely polycytemia
- hyperurikemia, renal insufficiency, increased LDH, increased transaminases
- exceptionaly hypercalcemia



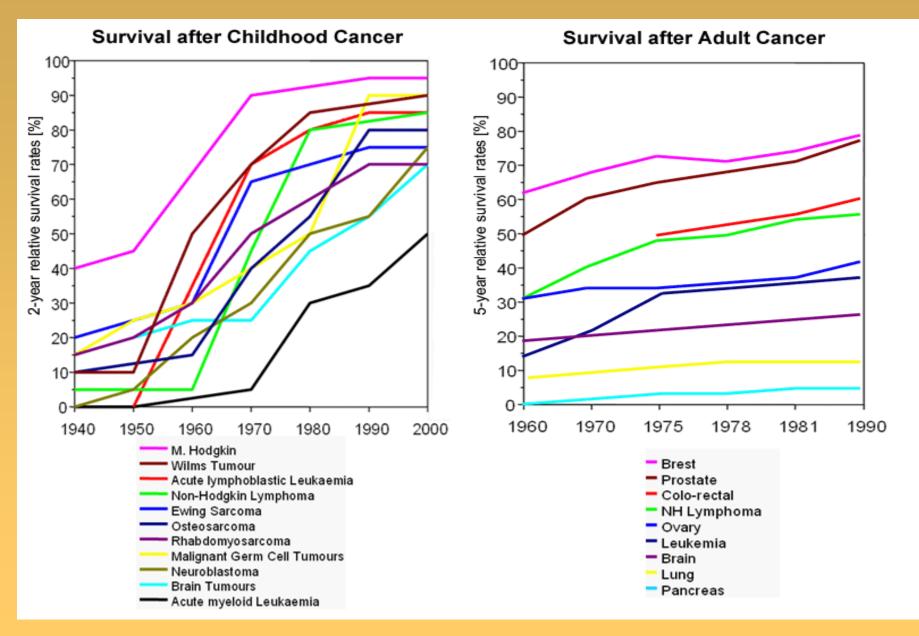


Molecular aberrations in childhood ALL


ALL - immunophenotypes



ALLIC (N=291) 5-y OS BCP-ALL vs. T-ALL


ALL in children - genotype

ALLIC (N=291) 5-y OS according to genotype

Survival of children and adults with cancer

ALL treatment

Induction 4-5 weeks, at the end 98% pts in remission (despite up to 10¹⁰ malignant cells remains)

Consolidation few months

Late intensification re- induction 6 months since diagnosis

Maintenance treatment gradual "comeback to life", peroral cytostatics until total length of treatment 2 years

+ since the beginning prophylaxis of CNS leukemia

Antimetabolites

(Methotrexate, Cytosin arabinosid, 6-mercaptopurine, 6-thioguanine)

Alkylating agens

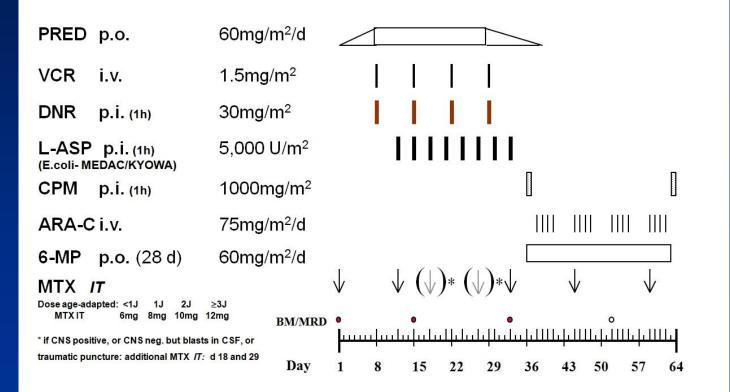
(Cyclophosfamide, Ifosfamide)

Antibiotics

(Doxorubicine, Daunorubicine, Idarubicine; Mitoxantron)

<u>Alkaloids</u>

Vinca alkaloids (Vincristin, Vinblastin, Vindesin) Podophyllotoxins (Etoposide)

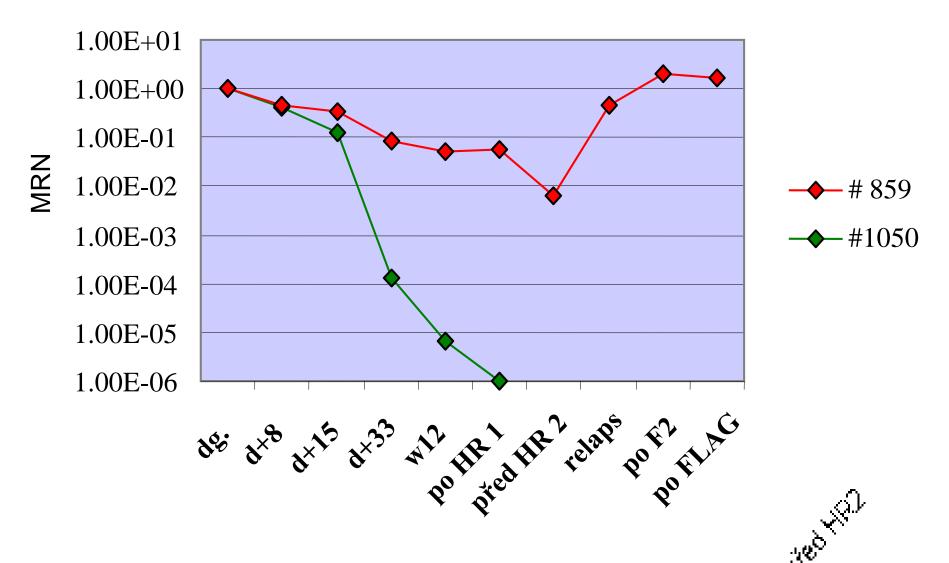

Various

(L-asparaginase)

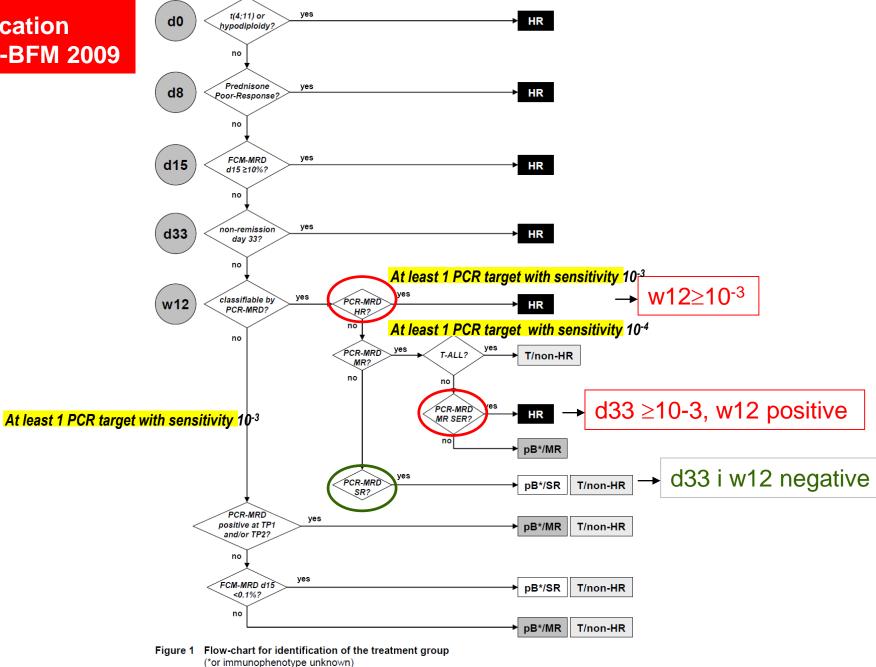
BFM studies – professor H. Riehm

BFM 2003 MS

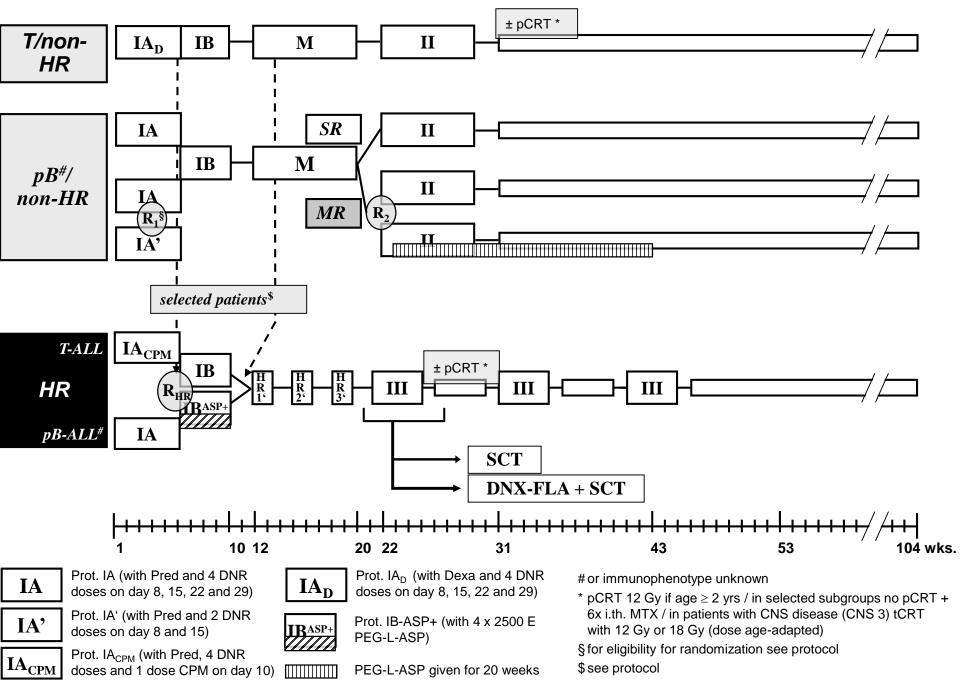
Protocol I



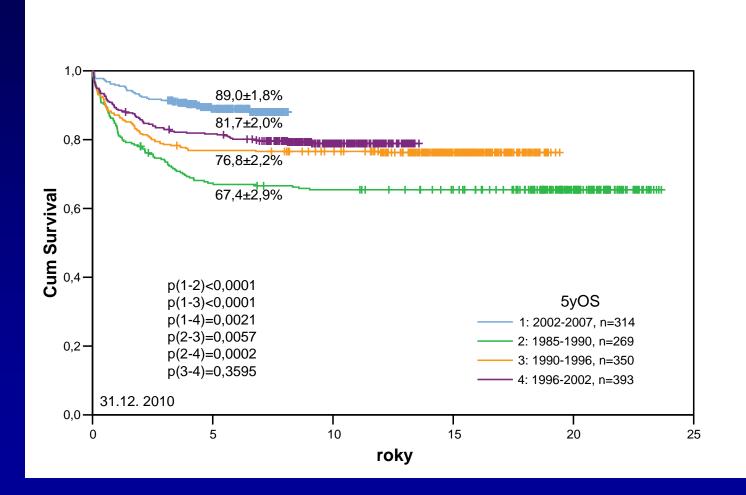
MRD in ALL treatment


- MRD as a research method since 1988
- Procedure: quantification of fusion transcripts by the help of qPCR quantification of clonal specific rearrangements by Ig/TCR genes by the help of qPCR polychromatic flow cytometry

T-ALL+ PPR+ BMd15 M3+ BMd33 CR Comparison according to MRD



Risk stratification AIEOP-BFM 2009



AIEOP-BFM ALL 2009

ALL in Czech Republic 1985-2007 5-y OS

