Clinical immunology

Outline

- Terms and definitions
- Evolution
- Overview of investigations
- Disorders of immune system
 - Immune deficiencies
 - Autoimmunity
 - (Allergy)
 - (Malignancy)
 - (Transplantation medicine)

Terms and definitions

- Complex system of cells and molecules with special roles in defense against infection
- Levels of defence
 - Skin and mucosal surfaces (enzymes, pH, mucus, cilia) antimicrobial properties, inhibition of microbial adhesion
 - Non-specific (innate) immunity same type and extent of action in repeated microbe exposure
 - Specific (adaptive, acquired) immunity improves efficacy in repeated microbe exposure

Mechanisms of innate immunity

- Phagocytic system
 - Neutrophil leucocytes
 - Monocytes
 - Macrophages
- Mediator-releasing cells
 - Basophilic granulocytes
 - Mast cells
 - Eosinophilic granulocytes
- Complement, acute-phase proteins, cytokines (interferons)

Acquired immunity

- Proliferation of Ag-specific B and T cells
 - Response to Ag presentation by APC
 - B-cells Ig production (extracellular pathogen elimination)
 - T-cells:
 - Provide help to Ab production
 - Destroy intracellular pathogens (Macrophage activation, destruction of virus-infected cells)

Immune system evolution

- Source : Pluripotent stem cell of yolk sac (week 3) to fetal liver (week 5)
- Sites of maturation in primary lymphoid tissue (week 8-11):
 - B-cells: bone marrow
 - T-cells: thymus
- Sites of acquired immune response: secondary lymphatic organs:
 - LN, spleen, MALT

T-cell development

- Thymus seeded by blood-borne T-cell precursors from fetal liver (pro-T cells), evolution of TCRs (through TCRgene rearrangement-random combinations → enormous TCR diversity)
- Upon TCR expression selection processes start
 - Positive selection interaction of immature thymocytes expressing low levels of TCR with MHC on thymic epithelium (CD4 – HLA II, CD8 – HLA I) – selection of cells capable to interact with foreign antigens presented on self MHC
 - Negative selection thymocytes with high TCR expression reacting with self peptides presented by HLA I or II of thymic macrophages induces apoptosis – deletion of autoreactive cells
- Migration of T cells to secondary lymphoid organs

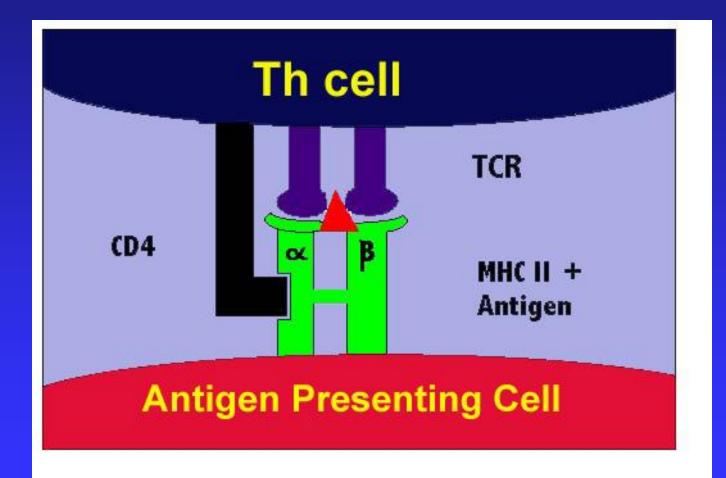
B-cell development

- Fetal liver stem cells (wk 7) seed bone marrow
- Antigen-independent development (immunoglobulin gene rearrangement processes) reached by wk 14 – mature (virgin) B cell
- Antigen-dependent development after stimulation by Ag through antigen receptor (sIg)
 - Differentiation into memory cells (for particular Ag) and plasma cells (secreteing Ag-specific Ig=antibody)
 - Ig isotypes : M,G,A,D,E

Immunoglobulins

- IgG+M = the only C-fixing Igs, main protection against infection
- IgM-intravascular, IgG all fluids
- IgA surface protection (secretions)
- IgE defense against parasites, mediator of immediate type of allergic reaction
- Maternal IgG cross placenta from wk 12 by birth when reach maternal level

Immune cell interactions


- BCR (sIg) recognizes native Ag
- TCR recognizes only processed antigenic peptides presented by MHC molecules
 - Class I: HLA –A,-B,-C antigens
 - Class II: HLA –DR,-DP,-DQ antigens
- Presentation by antigen-presenting cells (APCs)

Ag presentation

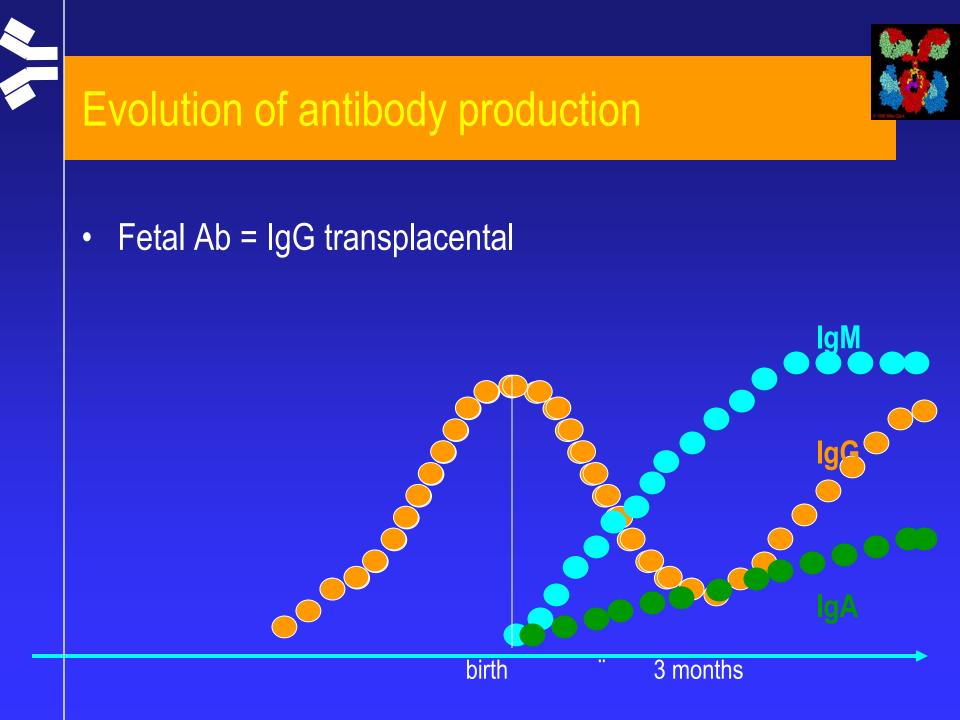
- MHC molecules groove to fit with peptide
- HLA I: expressed by most nucleated cells

 Degraded cell peptides incl. Viral peptides in
 infected cells
- HLA II: macrophages, dendritic cells, B-cells
 - Peptides from exogeneous native antigens (bacterial proteins)

Ag presentation

- Primary Ab response: native Ag is carried to the draining LN, taken up by specialised cells (FDCs), expressed and presented to virgin B-cells→evolution into plasma cell, production of Ag-specific IgM (lowaffinity)
- Some B-cells become memory cells

 Can switch Ig genes to IgG, A or E production
- Secondary Ab response upon memory B-cell encounters Ab again
 - More cells generated, somatic mutation of Ig genes increases affinity


Postnatal lymphopoiesis

- T-cell (CD3+) number in cord blood higher in infants
 - CD4:CD8 higher
 - Ability of cord blood T-cells to respond to mitogens and to develop Ag-specific response (BCG)

Postnatal lymphopoesis

• **B-cells**

- Higher in cord blood, do not make full Ig range, start with IgM in response to Ag stimulation from environment (premature have this ability)
- Total Ig level at minimum around 3-4 mo
- Ability to produce Ab against protein Ag from birth, against polysaccharides from 2y (conjugated vaccines e.g.HIB)
- Newborns susceptible to G- organisms because lack of IgM (=opsonins)-impaired phagocytosis by PMN
- Mother IgG serve as opsonins for most G+ bacteria, specific
 IgGs against common viral infetions suffice
- Premature infants receive less IgG-lower opsonic activity to all types of organisms

Lymphoid organ development

- Thymus at birth 2/3 of mature weight, peak mass just before puberty, then gradual involution
- **Peripheral lymphoid tissue** adult size reached by 6 yrs, exceeds those dimensions during prepubertal years, involution coincident with puberty
- Spleen gradually grows until adulthood
- Peyer patches gradually grow, largest during adolescence

Immunopathology

Homeostasis dysregulation

- Immune deficiencies
- Alergies
- Autoimmunity
- Neoplasia
- Graft rejection

Immunodeficiencies

Terminology

- Specific/acquired immune system
 - Humoral B-cell/antibody deficiencies
 - Cellular T-cell defects
 - Combined
- Non-specific/innate immune system
 - Humoral complement deficiences
 - Cellular phagocyte function disorders

Evaluation of suspected immunodeficiency

- Major cause of recurrent infections: excessive exposure to infectious agents in group settings
- Indications for immunologic evaluation
 - $-\geq 2$ systemic or serious bacterial infections
 - $-\geq 3$ serious respiratory or bacterial soft tissue infections in 1 year
 - Infections at unusual sites (liver, brain abscess)
 - Infections with unusual pathogens
 - Unusually severe infections with common pathogens

Screening evaluation

- Thorough history
- Physical exam
- Laboratory screening
 - FBC, diff, ESR
 - B-cells: IgA (G,M), isohemagglutinins, Ab to tetanus, diphteria, H.Infl., S.pneumoniae
 - T-cells: Abs L count, Candida intradermal skin rest (or MxII)
 - Phagocytes: Abs N count, respiratory burst assay
 - Complement: CH₅₀

FBC, ESR

- Normal L count: T-cell defects unlikely
- Normal N count: precludes neutropenia, leucocyte adhesion deficiency
- Normal Plt count: excludes Wiscott-Aldrich syndrome
- Normal ESR: chronic bacterial or fungal infection unlikely

Primary defects of antibody production

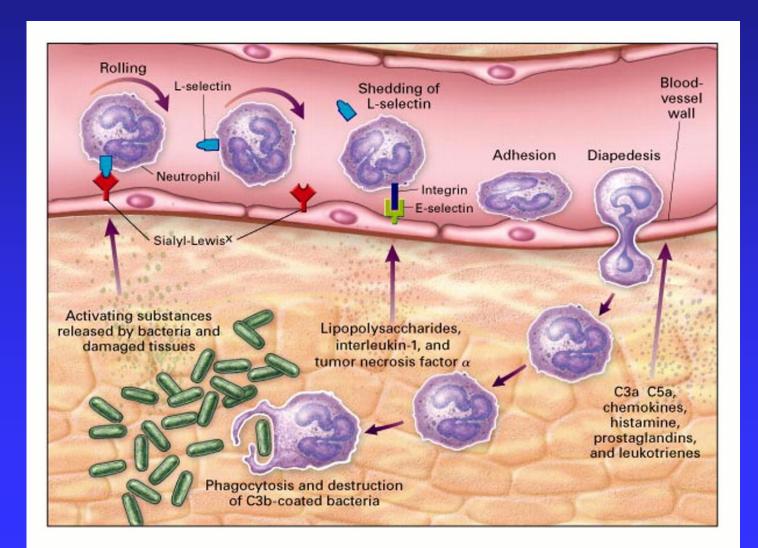
- Most frequent of the primary ID
- Clinically: recurrentinfections with encapsulated bacteria or history of failure to respond to ATB
- Selective IgA deficiency most common (1/300-1/16000), agammaglobulinemia (1/50000)
- Genetic defects recognised for many, not only in B, but also T-cells providing help
- Therapy:
 - antibiotics + regular Ig replacement therapy (IVIG)
 - Bone marrow transplantation for CD40 ligand defect and XLP

XLA (Bruton)

- Profound defect in Bcell development, absence of circulating B cells, small to absent tonsils and no palpable LN
- Defective gene (long arm X chr) for tyrosin kinase (Btk), necessary for maturation
- Most affected boys well over initial 6 mo of life, then infections with extracellular pyogenic organisms
- Dg: screening, FACS, prenatal mutation analysis in male fetuses of carrier mothers (chorionic villus)

CVID

- Hypogammaglobulinaemia with phenotypically normal B cells
- Later age at onset of infections
- Equal sex distribution, less severe infections than in XLA
- In most cases no identified molecular defect
- Connection to isolated IgA deficiency
- Serum Ig low, autoAb formation possible, normal or enlarged tonsils and LN, splenomegaly, higher rate of lymphomas


Primary defects of cellular immunity

- Generally more severe infections, often fungi, viruses, pneumocystis
- Thymic hypoplasia (DiGeorge syndrome)
 - Dysmorphogenesis of the 3rd and 4th pharyngeal pouches in early embryogenesis
 - Parathyroid glands and often other structures (aortic arch, heart, oesophagus, uvula..) also affected
 - Often hypocalcemic seizures in neonate
 - Variable degree of thymic deficiency (,,partial" syndrome)
 - Therapy: HLA-identical sibling BMT, thymic tissue transplants

Primary combined immunodeficiences

- Severe, often opportunistic infections, death in early infancy or childhood unless early BMT provided
- SCID
 - Diverse mutations, absence of all adaptive immune functions
 - Small thymus, underdeveloped lymphoid tissues
 - Early presentation with various severe infections with wasting, persistent opportunistic infections (cave BCG), GVHD from maternal T cells or non-irrdiated blood rpoducts
 - Lymphopenia at birth
 - Therapy : pediatric emergency, without BMT death before 1st year
 - Gene therapy in the future

Acute inflammatory response

Phagocyte function disorders

Chronic granulomatous disease

- Inability of Ne and Mo to kill ingested microbes, accumulation of ingested material, formation of granulomas
- Defet of the generation of oxygen metabolites
- Incidence 4-5/1 million, X-linked in 2/3, 1/3 AR
- Recurrent/unusual lymphadenitis, multiple osteomyelitis, hepatic abscesses, unusual Staph infections
- Onset from early infancy to adulthood
- NBT test, DHR test (flow cytometry)
- Therapy: supportive care + IFNgamma followed by BMT,

Leucopenia

• Note developmental changes

Neutropenia: acute, chronic, drug-induced

- Infections primarily from endogeneous flora and nosocomials. Fever, soft tissue, mucous memb and skin, respiratory and GI tract, most comonly Staph, G- bact
- Therapy: rhG-CSF, ATB
- Immune-mediated
 - Circulating antineutrophil Ab
 - ANN (alloimmune neonatal) transfer of maternal Ab, isolated, ANI (infancy)
- Ineffective myelopoiesis (vit B12, folic acid def., malabsorption...)
- Intrinsic disorders of myeloid stem cells
 - Cyclic neutropenia- AR, regulatory abnormality
 - Severe congenital neutropenia Kostmanndisease
 - Schwachman-Diamond disese AR, GI disorder + neutropenia, by 4 mo, chondrodysplasia
 - GSD Ib(vonGierke)

Lymphopenia

- 65% of CD3 (T cells) are CD4 helper T lymphocytes
- Often no specific symptoms
- Inherited causes
- Acquired: AIDS (destruction of infected CD4), other infections, therapy side effects, immune-mediated

Complement disorders

- Primary deficiences of all 11 components of classical membrane attack pathway possible
 - C1q (and other components) deficiency SLE-like syndrome
 - Recurrent Neisseria infections typical
- Deficiences of C control proteins
 - Properdin def predisposition to meningococcal infection
 - Hereditary angioedema abnormal synthesis of C1 inhibitor (5-30%), acquired form possible

Vaccination

- Principle: Active / passive immunisation
- Passive immunisation
 - Specific IgG (e.g. hepatitis A, chicken pox)
- Active immunisation
 - Live vaccines (attenuated virus e.g. Rubella, or bacteria – e.g. BCG)
 - Inactivated microbes (e.g. Polio)
 - Antigenic components (e.g. tetanic toxoid)

Czech Vaccination Scheme

Basic scheme

- Hexavaccine: Diphteria, Tetanus, Whooping cough, Hepatitis B, HIB, Polio
 - From Week 13
 - Re-vaccinations: 1 month after 1st dose, 1 month after 2nd dose, 6 months after previous
 - Tetanus re-vaccinations at age 14-15 and then every 10 years
- Mumps, measles, Rubella
 - Month 15
 - Re-vaccination after 6-10 months

Czech vaccination scheme

age	disease
M 2 (from w 9)	HEXA 1st dose (diphteria, tetanus, whooping cough, HiB, VHB, polio)
M 3	HEXA 2.d pneumococcus 1.d.
M 4	HEXA 3.d pneumokok 2.d.
M 5	pneumokok 3.d.
M 11.15.	pneumokok 4.d.
M 15	Rubella, measles, mumps 1.d.
By M 18	HEXA 4.d.
M 2125.	Rubella, measles, mumps 2.d
Y 56.	diphteria, tetanus, whooping cough re-vaccination
Y 1011.	diphteria, tetanus, whooping cough,polio -

Optional vaccinations : •Rotavirus •By M5

Meningococcus

•Type C prior to schooling, re-vaccinate Y 7-10
•Combined vaccine type A, C, Y, W 135 (prior to travel)
•Hepatitis A
•Chicken-pox
•Tick-bite encephalitis

- Hek-blie encepha
- •Flu
- •HPV