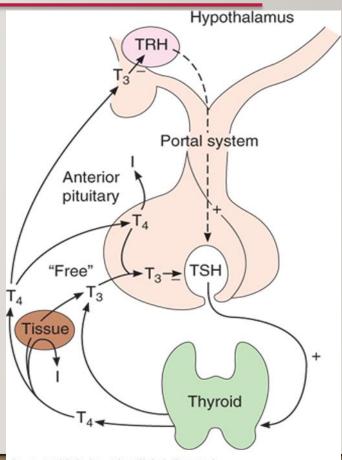

PEDIATRIC ENDOCRINOLOGY I.


J. KYTNAROVÁ, KPDPM 1. LF UK A VFN

THYROID GLAND HORMONOGENESIS AND REGULATION

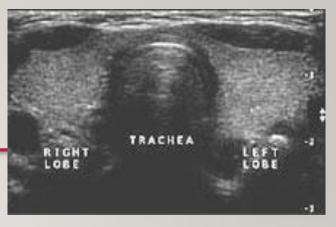
- Substrates: iodine and amino acids
- lodine 59-65%
- prohormone thyreoglobulin
- thyroxine (T4)
- 3,5,3 'triiodothyronine (T3)
- T3 3-8x more efficient than T4
- Production T4/T3 3:1

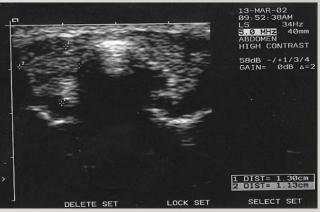
Source: http://doctorsgates.blogspot.com/2011/01/

Source: David G. Gardner, Dolores Shoback: Greenspan's Basic & Clinical Endocrinology, Tenth Edition Copyright © McGraw-Hill Education. All rights reserved.

WHAT IS THE MAIN SYMPTOM...?

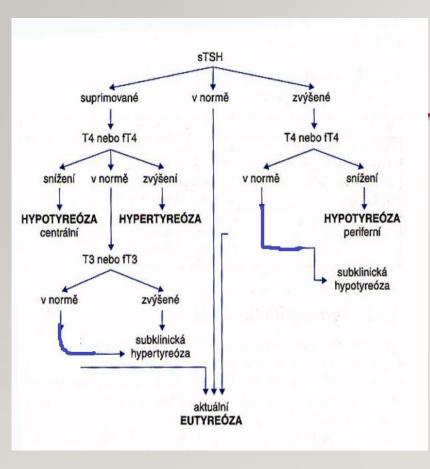
1. Goiter


Palpation


2. Symptoms of pressure (autoimmune thyreoditis)

- Coughing
- Discomfort on/in the neck
- 3. Signs of impaired function of thyroid gland
- Hypofunction, hyperfunction

THYREOPATHIES DIAGNOSTICS


- Physical examination
- Clinical signs of impaired thyroid function
- Goiter —the presence of goiter should always be verified by sonography!!
- Ultrasound
- size goiter
- structure -signs of autoimmune disease
- focal changes

LABORATORY TESTS

Antibodies

Anti TPO – against peroxidase (CLT 90%, GBT 86%)
Anti Tg - against thyreoglobulin (CLT 70%, GBT 30%)
CAVE! Only when anti TPO are negative
Long-term follow-up of antibodies has no prognostic significance!
It is not necessary repeat them! (1x in 1-2 years)

TRAK - TSH-R-Ab (stim)

CAVE! Only Graves disease, dynamics monitoring is useful

Source: doporučený postup "Diagnostika a léčba tyreopatií". Novelizace 2015. Límanová Z. a kol. Společnost všeobecného lékařství.

SCINTIGRAPHY - INDICATIONS

- 1. congenital hypothyreoidism
- Ectopic thyroid tissue
- Dyshormonogenesis
- 2. Autonomous production of thyroid hormones (independent adenoma)

3. Metastases of thyroid gland carcinoma after elimination of thyroid gland

FNAB (FINE NEEDLE BIOPSY)

- Advantages
- simple, rapid, cheap
- relatively non-invasive
- substantial informations
- Genetics somatic mutation
- Disadvantages
- it may not be consistent with histology

GOITER

The most common causes of thyroid enlargement??

CAUSES OF THYROID ENLARGEMENT

- 1. 2. lodine deficiency X AITD (autoimmune thyroid disease)
- Improved iodine supplementation
- ↓ difuse goiter with normal function
- ↑ AITD
- (Němeček a kol., 2005)
- X
- 3. Congenital defects of hormonogenesis
- 4. Graves disease
- 5. Tumors.....

Hill a Adamson, 1847, first photograph of goiter. www.ganfyg.org

IODINE

- Recommended daily intake of iodine (UNICEF, ICCIDD, WHO, 2007)
- (Assessment of iodine deficiency disorders and monitoring their elimination.http://apps.who.int/iris/bitstream/10665/43781/1/9789241595827_eng.pdf)

Age	Recommended daily intake of iodine (ug/den)
Preschool children (0-59 months)	90
School children (6-12 years)	120
Adolescents and adults (above 12 years)	150
Pregnant and lactating women	250

"IODINE DEFICIENCY DISEASE"

- Fetus
- Abortions, stillbirths, congenital anomalies, ↑ perinatal mortality
- Neonates, infants
- Endemic cretenism, psychomotor retardation, goiter, hypothyroidism
- Children and adolescents
- Goiter with normal function, hypothyroidism, impaired mental function
- (prolongated reaction time), delayed physical development, short stature,
- (Source: Labhart A. Clinical Endocrinology, 1974)

• Spastic diplegia (source: Assessment of iodine deficiency disorders and monitoring their elimination.http://apps.who.int/iris/bitstream/10665/43781/1/9789241595827_eng.pdf)

"IODINE DEFICIENCY DISEASE"

- umber of countries with iodine deficiency
- in 2007 and 2011 there was no country with proved severe iodine deficiency
- 37/128 countries with sufficient iodization in at least 90% of households 39/128 countries, where iodization covers less than 50% of the population 70% of households worldwide have access to iodized salt
- (Zimmermann M.B., Andersson M. Update on iodine status worldwide, Current Opinion in Endocrinology, 2012,
- Andersson M, Zimmermann M.B. ICCIDD, Global iodine nutrition: a remarkable leap forward in the past decade, 2012)

SALT IODIZATION

Czech Republic – iodization since 1950s, changes in 1994

- Iodide (KI) → iodate
- 25 mg/kg \rightarrow 35 mg/kg (20 34 mg/kg)
- Iodization of food salt and some food products
- Excessive iodine intake
- 350 500 ug
- "trigger" of autoimmune disease, Iodine ↑antigenicity TG

HYPOTHYROIDISM

- Congenital
- 1. Thyroid gland dysgenesis 80-85% (agenesis, ectopic thyroid gl., hypoplasia)
- 2. Dyshormonogenesis
- 3. Central hypothyroidism (hypothalamus pituitary)
- 4. Transplacental transmission of goitrogenic agents
- 5. Target tissue resistence against thyroid hormones

CONGENITAL HYPOTHYROIDISM CLINICAL SIGNS AND SYMPTOMS

5-10% newborns after delivery

Development during weeks up to 2-3 months

↑ BW and BL

Large anterior fontanelle, small f. opened

Prolongated jaundice

↓ Physical activity

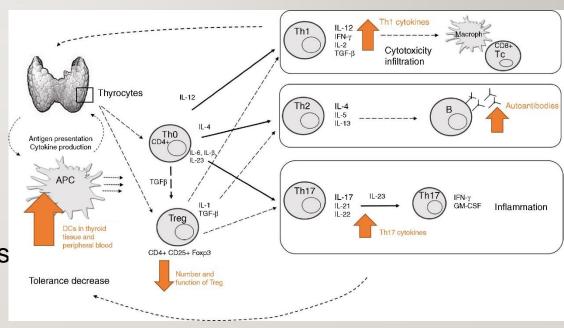
Hypotonia

Hypothermia

CONGENITAL HYPOTHYROIDISM CLINICAL SIGNS AND SYMPTOMS

- Poor feeding
- Decreased stooling or constipation, vomiting
- myxedema
- skin, face, periorbital edema
- Respiratory tract → respiratory distress, perioral cyanosis
- macroglossia
- Wide and flat nasal root
- Teeth eruption delay
- Psychomotor retardation
- Growth retardation
- Hearing loss

NEWBORN SCREENING FOR CONGENITAL HYPOTHYROIDISM


- The most common treatable cause of mental retardation
- Czech Republic screening since 1985
- Incidence
- Czech Republic year 2016
 1:3 521 newborns
- Word
 1:3000-4000 newborns
- TSH 48.-72. hour after delivery dried blood spot
- Cave! does not detect central hypothyroidism!

ACQUIRED HYPOTHYROIDISM CAUSES

- Chronic autoimmune thyroid disease (CAITD)
- Central hypothyroidism (TRH/TSH)
- Thyroidectomy
- ¹³¹I therapy
- Strumigens († iodine intake, cobalt)
- Thyroid gland infiltration (cystinosis, histiocytosis X)
- Craniospinal radiotherapy

AUTOIMMUNE THYROID DISESAE (AITD) ETIOLOGY AND PATHOGENESIS

- Genetic factors (predisposition) (HLA system)
- Environmental factors ("triggers")
- 1. Infections (biological factors)
- Viral enterovirus coxsackie B, retroviruses GBT
- Bacterial Yersinia, borrelia,
- 2. Physical and chemical factors
- Drugs -Amiodaron, drugs with iodine content, cytokins
- X ray contrasts, psychofarmacs (lithium)
- Radiation, smoking... free radicals, chemical toxins
- 3. stress including mental stress

<u>Source: Pathogenesis of thyroid autoimmune disease: the role of cellular mechanisms | Endocrinología y Nutrición (English Edition)</u>

AITD - CLASSIFICATION

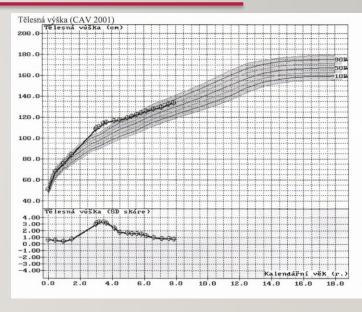
- Chronic autoimmune thyroid disease (CAITD) Th1 cellular immune response
- Hashimoto thyreoiditis (goiter, nodular changes)
- Chronic lymphocytic thyreoiditis without goiter and/or with atrophy
- Chronic lymphocytic thyreoiditis of children and adolescents
- Chronic fibrotic thyreoiditis
- Postpartum thyreoiditis
- Graves-Basedow hyperthyroidism Th2 antibody response

HYPOTHYROIDISM CLINICAL SIGNS AND SYMPTOMS

Skin	dry rough skin, myxedema, macroglossia, swelling, hair dry, coarse, hair thinning soft swelling of the face, yellowed skin rigid soaked forearm
Labor	muscle weakness, fatigue, change of voice
Metabolism	weight gain (accumulation of fluid in myxedema, decreased metabolism) decreased appetite constipation, winter intolerance
Nervous system	slowness, sleepiness
Circulation	Bradycardia

(Source: Šilink/K, 1962)

HYPOTHYROIDISM CLINICAL SIGNS AND SYMPTOMS


- Differences in childhood
- Decreased growth velocity
- Delay of puberty, bone maturation
- Irreversible CNS damage up to 3 years of age

HYPERTHYROIDISM - CAUSES

Immune	Graves disease Transient hyperfunctional phase of CAITD
Autonomous production	Nodular goiter Adenoma with autonomous production
latrogenic	Medication ↑ iodine intake
Central hyperthyreodism	Pituitary adenoma with ↑ TSH secretion
Ostatní - vzácně	Differenciated thyroid Ca metastasis Neonatal hyperthyroidism (transplacental TRAK transfer) McCune-Albright syndrom

HYPERTHYROIDISM - SIGNS AND SYMPTOMS

Skin	sweaty wet skin, tremor, thinning of hair
Labor	muscle weakness, myopathy
Metabolism	Weight loss with increased appetite more frequent stools heat intolerance osteoporosis Cave! Acceleration of growth velocity!
Nervous system	nervousness, irritability, ↓ attention, tremor, insomnia
Circulation	tachycardia, palpitations
Eyes	protrusion, orbitopathy

GBT - THERAPY

- 1.Conservative drugs
- Thyreostatics the first drug of choice
- Methymazole (thyrozole) 0,15 0,5 mg/kg/day, after 4-6 weeks ↓ 25-50% dose reduction
- Duration of treatment long lasting enough > 3 years
- block-replace therapy
- Overall remission rate afte 2 years therapy 20-30%
- 2. Definitive treatment
- indications: disease recurrence, insufficient treatment effect, intolerance of therapy, non-compliance ...
- ČR Surgical treatment total thyroidectomy (TTE)
- Europe Radioiodine 131I (RAI) (ČR radioiodine contraindicated in childhood)
- (2022 European Thyroid Association Guideline for the management of pediatric Graves' disease PubMed)

NEONATAL HYPERTHYROIDISM

- 1. <u>Transplacental transfer TSH-R (stim)</u> antibodies
- (active mother 's GBT), could be present after TTE, ablation by radioiodine... !!!
- 2. <u>Activation mutation of G protein</u> (McCune-Albright syndrome)
 - 3. Activation mutation of TSH receptor

Signs and symptoms

IUGR, hydrops faetalis

craniostenosis

Poor weight gain, diarrhea, vomiting

tachykardia, heart failure, arrhytmia

neonatal GBT – self limiting – up to 48 weeks

DIABETES MELLITUS

Definition

a group of metabolic diseases characterized by chronic hyperglycemia

Causes

- insufficient insulin secretion
- Insufficient insulin action (insulin resistance)
- a combination of both of the above

Consequences

 Insufficient effect of insulin in target tissues → abnormalities of carbohydrate, fat and protein metabolism

DIABETES MELLITUS

- One of the most serious and most common metabolic diseases in childhood
- USA incidence is higher than all malignancies
- ČENDA (Czech national register of childhood DM, ČDS JEP)
- 420 newly diagnosed children/year 2019
- 508 newly diagnosed children/year 2022
- 475 newly diagnosed children/year 2023
- diabetic ketoacidosis (DKA) first manifestation of DM in 15% -70% of children

DIABETES MELLITUS CLASSIFICATION (ADA 1997, WHO 1998)

- <u>Typ I</u> (IDDM...)
- β cells destruction
- Typ II (NIIDM, maturity onset)
- mainly insulinoresistance with relative lack of insuline
- Gestational diabetes mellitus
- Other specific types

SPECIFIC TYPES OF DM

- Genetic defects of β cells
- □ MODY (at least 14 different known MODY mutations), monogenic diabetes, mitochondrial DM
- Pancreatic diseases
- cystic fibrosis, pankreatitis, hemochromatosis, Tumors...
- Infections cong. rubella, CMV...
- <u>Drugs glucocorticoids</u>, thyroid hormones, diazoxide, phenytoin....
- Endocrinopathies acromegaly, Cushing, pheochromocytoma.....
- Genetic syndromes Turner, Prader-Willi sy, Klinefelter, Down.....

CHARACTERISTICS OF DM I. AND II.

	DM I	DMII
Age of onset	Usually <30 let	Usually >40 let
Weight (BMI)	Obesity uncommon	80% are obese
Genetics	Polygenic (HLA associated)	Polygenic (non HLA associated)
Antibodies against β cells	++	-
Insuline therapy	The only choice, permanent	Usually not necessary
Complications	Frequent	Frequent
Frequency (%)	90-95%	2% (Caucasian population)

ETIOLOGY OF DM I

chronic immune-mediated destruction of pancreatic β-cells

- Antibodies
- ICA (against β cells)
- IA2 (against tyrosin fosfatase)
- GAD65 (against glutamic acid decarboxylase)
- IAA (against insuline)
- ZnT8 (againts zinc transporter 8)

GENETIC AND ENVIRONMENTAL FACTORS

Genetic factors

- Interaction of many genes, the strongest association with HLA (Human Leucocyte Antigen)
- <u>†risk</u> HLA DR3 DQA1*0501-DQB1*0201 , HLA DR4 DQA1*0301 -DQB1*0302
- <u>trisk</u> HLA DR2 DQA1*0102 -DQB1*0302
- risk in first-degree relatives ↑ 15x
- Nongenetic factors environmental "triggers"
- Seasons ↑ winter, autumn
- Infections enteroviruses (Coxsackie virus B)
- Nutrition duration of breast feeding, cow milk, nitrates and nitrites...
- Perinatal and early childhood period ↑ mother ´s age, ↓ contacts with peers
- Hygiene theory.....

PATHOPHYSIOLOGY OF DM I

- ↓ insuline secretion → catabolism
- → utilisation of energy from fat and muscle tissue (↑ lipolysis and ↑ proteolysis)
- → ↑ gluconeogenesis in liver (↑ AMK a FFA in hepatocytes)
- † ketogenesis
- 2. ↓ insuline/glucagon ratio →↑ ketone levels by direct effect on hepatocytes
- peripheral utilization of glucose and ketones
- \uparrow ketones (β hydroxybutyrate, acetoacetat) \rightarrow metabolic acidosis

COURSE OF DM I SIGNS AND SYMPTOMS DEVELOPMENT

- postprandial hyperglycaemia
- fasting hyperglycaemia late sign, ↑ gluconeogenesis
- glycosuria renal threshold for glucose (10 mmol/l)
- osmotic diuresis → polyuria, loss of electrolytes to the urine,
- dehydration
- compensatory polydipsia

CLINICAL CHARACTERISTICS AT PRESENTATION OF DM 1

- Non-emergency presentations
- Recent onset of enuresis in a previously toilet-trained child (may be misdiagnosed as a urinary tract infection)
- Chronic weight loss or failure to gain weight in a growing child
- Irritability and decreasing school performance
- Perineal candidiasis, especially in prepubertal girls. Recurrent skin infections
- Source: ISPAD Clinical Practice Consensus Guidelines 2022. https://www.ispad.org/page/ISPADGuidelines2022

CLINICAL CHARACTERISTICS AT PRESENTATION OF DM 1

- Emergency presentations (diabetic ketoacidosis)
- Moderate to severe dehydration
- Frequent vomiting, abdominal pain (may be misdiagnosed as gastroenteritis)
- Continuing polyuria despite the presence of dehydration
- Weight loss due to fluid loss and loss of muscle and fat
- Acetone detected on the breath
- Kussmaul respiration (Hyperventilation of diabetic ketoacidosis,
- Alteration of consciousness (disoriented, semicomatose, or rarely comatose)
- Shock (rapid pulse rate, poor peripheral circulation with peripheral cyanosis)
- Hypotension (a very late sign and rare in children with diabetic ketoacidosis)
- Source: ISPAD Clinical Practice Consensus Guidelines 2022. https://www.ispad.org/page/ISPADGuidelines2022.

DKA - BIOCHEMICAL CRITERIA

- Hyperglycemia (blood glucose >11 mmol/l
- Venous pH <7.3 or serum bicarbonate <15 mmol/l
- Ketonemia (blood ß-hydroxybuyrate ≥3 mmol/L) or moderate or large ketonuria
- Source: ISPAD Clinical Practice Consensus Guidelines 2022
- https://www.ispad.org/page/ISPADGuidelines2022

CRITERIA FOR THE DIAGNOSIS OF DM

- 1. Hyperglycaemia (≥11.1 mmol/L) and symptoms of diabetes or hyperglycemic crisis
- or 2. Fasting plasma glucose ≥7.0 mmol/L.
- or 3. OGTT two-hour postload glucose ≥11.1 mmol/L
- or 4. HbA1c ≥6.5%b
- unclear cases repeated glucose measurements!!! Fasting/postprandial (2 hours) or glycemic profile
- OGTT should not be performed if diabetes can be diagnosed using fasting, random, or postprandial criteria, as excessive hyperglycemia can result from the test!!!!.
- OGTT may be useful in diagnosing other forms such as type 2 diabetes, monogenic diabetes
- Antibodies GAD, IA2, IAA, ZnT8, HbA1C
- OGTT (fasting gly >7 mmol/l, 2 hours > 11,1 mmol/l)
 - Source: ISPAD Clinical Practice Consensus Guidelines 2022 , https://www.ispad.org/page/ISPADGuidelines2022

DKA - GOALS OF THERAPY

- correct dehydration (ECF loss moderate DKA 5-7%, severe DKA 7-10%)
- correct acidosis and reverse ketosis (bicarbonate therapy when pH < 6,9)
- gradually restore blood glucose concentration to near normal
- To correct salt depletion (Na, K)
- monitor for complications of DKA and its treatment
- identify and treat any precipitating event.

DKA - REHYDRATATION

- Volume expansion (resuscitation)
- 0,9% saline 10 ml/kg infused over 30 60 min (10-20 ml/kg 0,9% saline over 1-2 hours)
- shock bolus 20 ml/kg
- Subsequent fluid management (deficit replacement)
- 0,45 0,9 % saline or a balanced salt solution (Plasmalyte)
- with added potassium chloride, potassium phosphate or potassium acetate
- replace the estimated fluid deficit over 24 to 48 hours (50% first 8 hours, 50% 16 hours
- 5% glucose should be added to the IV fluid when the plasma glucose falls to approximately 14 to 17 mmol/L

DKA-INSULIN THERAPY

- Start insulin infusion at least 1 hour after starting fluid replacement therapy
- Dose: 0.05 to 0.1 unit/kg/h (dilute 50 units regular insulin in 50 mL normal saline, 1 unit = 1 mL)
- Route of administration IV
- An IV bolus should not be used at the start of therapy; may increase the risk of cerebral edema,
- glucose typically decreases at a rate of 2 to 5 mmol/L/h
- Cave!! If BG falls very rapidly (>5 mmol/L/h) after initial fluid expansion, consider adding glucose even before plasma glucose has decreased to 17 mmol/L.
- If glycemia falls rapidly or is low before resolving DKA, ↑ the amount of glucose administered, do not reduce the dose of insulin!
- Keep glycemia around 11 mmol/l

Goals of therapy of DM 1

- Optimal metabolic compensation prevention of long-term chronic complications of DM
- Low variability of BGs over 24 hours, without hypoglycaemic episodes
- BG 4.4 10 mmol/l

HBA1C < 53 mmol/mol
kompenzace
< 48 mmol/mol
(remission, availability of
technologies)</pre>

https://www.ispad.org/page/ISPADGuidelines2022

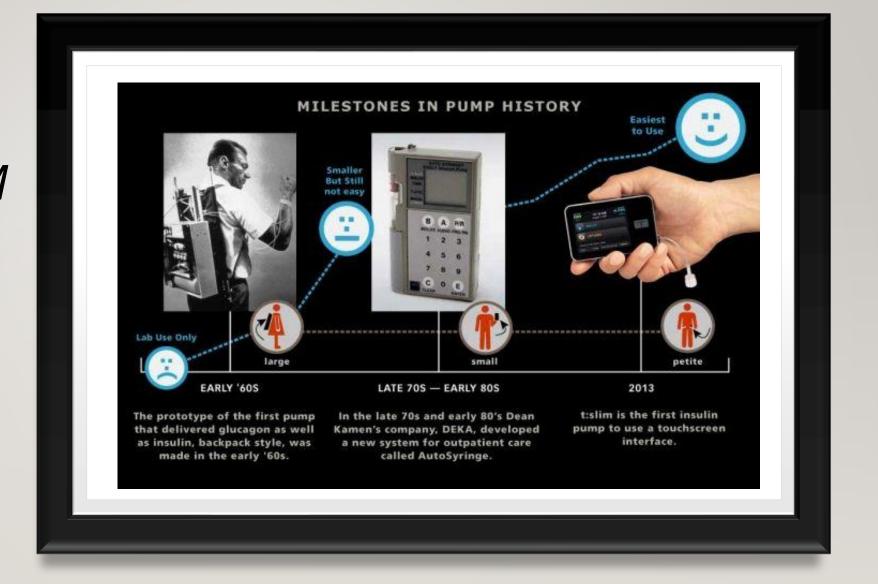
CGM – 14 days

- >70% expected range (3,9 10 mmol/l)
- < 4% pod 3,9 mmol/l
- < 1% pod 3 mmol/l
- < 25% nad 10 mmol/l
- < 5% nad 13,9 mmol/l
- ➤ Variability coeficient (CV)≤ 36%

DM I - INSULIN THERAPY

- Basal and prandial insulins schedule (subcutaneous) as close to physiological insulin replacement as possible
- Long acting analog 1-2 x daily
- At least 3 rapid acting insulin (analog) injections
- Fixed of flexible insuline dosing ????
- Dose: prepubertal children 0,7 1,4 IU/kg /day (partial remission < 0,5 IU/kg)
- puberty 1,2 -2 IU/kg/day
- 30 50% of daily dose long acting analog
- insulin pump treatment (Continuous subcutaneous insulin infusion [CSII])

NUTRITIONAL MANAGEMENT


- Dietary recommendations are based on healthy eating principles suitable for all children and families
- Remember! Only 10% of patients with DM I always follow the nutritional plan (at least at 90% of meals)!
- Three meals a day incorporating a wide variety of nutritious foods from all food groups, with appropriate healthy snacks (if necessary), will supply all essential nutrients, maintain a healthy weight, prevent binge-eating and provides a framework for regular monitoring of blood glucose levels and supervision of insulin doses (as required).

BGS SELF-MONITORING

- Continuous glucose monitoring (CGM)
- Flash glucose monitoring (FGM) (freestyle libre)
- fingerstick BGs testing 6 to 10 times per day
- "Regular self-monitoring of glucose (using accurate fingerstick blood glucose [BG] measurements, with or without continuous glucose monitoring [CGM] or intermittently scanned CGM [isCGM]), is essential for diabetes management for all children and adolescents with diabetes ...

Source: ISPAD Clinical Practice Consensus Guidelines 2022 . https://www.ispad.org/page/ISPADGuidelines2022

FINALLY FROM HISTORY OF PUMPING....

